Бензольные реакции — галогенирование, нитрование и сульфирование бензола

Бензол — бесцветная жидкость, которая была впервые обнаружена Майклом Фарадеем в 1825 году. Молекулярная формула бензола — C 6 H 6 . Из молекулярной формулы видно, что органическое соединение сильно ненасыщено. Из-за высокой степени ненасыщенности он очень реакционноспособен. В отличие от алкенов, он никогда не участвует в реакциях присоединения, окисления и восстановления. Например, бензол не будет реагировать с Br, HCl или другими реагентами, приводя к образованию двойных связей углерод-углерод. В большей части своей реакции бензол подвергается реакции замещения, при которой один или несколько атомов водорода заменяются другим атомом или радикалом.

Бензол относится к категории ароматических соединений. Фактически, термин «ароматический» был предварительно использован для описания бензола и его производных из-за его разнообразного аромата или запаха. Позже классификация бензола была сделана на основе их структуры и химической активности, а не на основе их аромата. Итак, теперь термин ароматические соединения используется для классификации тех соединений, которые являются чрезвычайно ненасыщенными и особенно стабильными по отношению к реагентам, которые активно взаимодействуют с алкенами.

В настоящее время термин арен используется для обозначения ароматических углеводородов по аналогии с алканом и алкеном. Бензол считается исходным ареном. Подобные соединения алкильной группы обозначаются символом RJ, аналогично, если один водород удаляется из арена, тогда комбинация арильной группы с новым атомом или группой обозначается как ArJ. 

Структура бензола 

Реакции замещения являются характерными реакциями бензола и почти не подвергаются реакции присоединения. Бензол обрабатывают бромом в присутствии хлорида железа в качестве катализатора, после чего образуется соединение, называемое бромбензолом, и это соединение, полученное из этого продукта. Реакция следующая:

Таким образом, из реакций вышеупомянутого типа был сделан вывод, что все шесть атомов углерода и все шесть атомов водорода в бензоле должны быть эквивалентны. Точно так же, если бромбензол обрабатывают бромом с хлоридом железа в качестве катализатора, образуются три изомерных дибромбензола:

Но в течение этих лет химики не были уверены в структуре бензола и в том, как эта структура может повлиять на химическую активность. Только в 1930-х годах химики постепенно пришли к общему пониманию уникальной структуры и химических свойств бензола и его производных.

Различные химические реакции бензола  

  1. Галогенирование бензола

Посредством реакции электрофильного ароматического замещения один атом водорода арена замещается одним атомом галогена. Вышеупомянутые реакции относятся к категории реакций галогенирования. Здесь мы попытаемся разобраться в механизме реакции. Эту реакцию проводят в присутствии катализатора кислоты Льюиса. Кислота Льюиса — не что иное, как акцептор электронной пары, а электроны по существу не связывают.

  1. Нитрование бензола.

В реакции нитрования бензола бензол обрабатывают смесью концентрированной азотной кислоты и концентрированной серной кислоты при температуре не выше 50 ° C. С повышением температуры увеличивается вероятность образования более одной нитрогруппы, -NO₂, которая замещается на кольце и приводит к образованию нитробензола. Концентрированная серная кислота действует как катализатор в этой реакции. «Ион нитрония» или «катион нитрила», NO + 2, здесь является электрофилом. Это происходит в результате реакции между азотной кислотой и серной кислотой.

  1. Сульфирование бензола

Сульфирование бензола включает реакцию электрофильного замещения, которая происходит между бензолом и серной кислотой. Есть два эквивалентных способа сульфирования бензола:

Первый способ включает нагрев бензола с обратным холодильником концентрированной дымящей серной кислоты в течение нескольких часов при 40 ° C. Образующийся продукт представляет собой бензолсульфоновую кислоту. Электрофилом здесь является триоксид серы, SO₃. Электрофил на основе триоксида серы может быть получен одним из двух способов в зависимости от того, какой вид кислоты используется. Его можно получить при небольшой диссоциации концентрированной серной кислоты, содержащей следы SO₃.

H₂SO₄ ⇌ H₂O + SO₃

Дымящаяся серная кислота, H₂S₂O₇, может рассматриваться как раствор SO₃ в серной кислоте, и, таким образом, это гораздо более богатый источник SO₃. Триоксид серы является электрофильным по своей природе, потому что это высокополярная молекула с изрядным количеством положительного заряда на атоме серы. Именно это привлекает кольцевые электроны. Происходящая реакция может быть представлена ​​как:

  1. Алкилирование и ацилирование бензола.

Эта реакция широко известна как реакция Фриделя-Крафтса. Реакционная способность галогеналканов постепенно увеличивается по мере продвижения вверх по таблице Менделеева, а также увеличивается полярность. Это означает, что реакционная способность галогеналкана RF максимальна, за ней следует реактивность RCl, затем RBr и, наконец, RI. Это означает, что кислоты Льюиса, используемые в качестве катализаторов в реакциях алкилирования Фриделя-Крафтса, имеют тенденцию иметь аналогичные комбинации галогенов, такие как BF3, SbCl2, AlCl4, SbCl2 и AlBr2, которые обычно используются в этих реакциях.

В 1877 году для получения алкилгалогенида использовалась описанная ниже процедура, но она сопровождалась нежелательной дополнительной активностью, которая снижала ее эффективность.

В качестве средства устранения этих ограничений была разработана новая улучшенная реакция: ацилирование Фриделя-Крафтса, также известное как алканоилирование Фриделя-Крафтса.

Самый первый шаг начинается с образования иона ацилия, который вступает в реакцию с бензолом на последующей стадии. Второй шаг касается атаки иона ацилия на бензол как нового электрофила, что приводит к одной сложной структуре. Третий шаг включает удаление протона, чтобы гарантировать, что ароматичность вернется к бензолу. На третьем этапе AlCl₄ возвращается, чтобы удалить протон из бензольного кольца, тем самым позволяя кольцу вернуться к своей ароматичности. При этом исходный AlCl2 регенерируется для повторного использования вместе с HCl. Кетон образуется как первый конечный продукт реакции. Эта первая часть продукта является сложной с хлоридом алюминия. Заключительный этап включает добавление воды для высвобождения конечного продукта в виде ацилбензола:

Поскольку ион ацилия (как было показано на первом этапе) стабилизируется из-за резонанса, перегруппировка здесь не происходит (ограничение этой реакции). Кроме того, из-за дезактивации продукта он больше не подвержен электрофильным атакам и, следовательно, больше не будут инициироваться дальнейшие реакции (еще одно ограничение). Однако ацилирование Фриделя-Крафтса может потерпеть неудачу из-за сильных дезактивирующих колец.

Но у этого алкилирования есть пара недостатков. К этим недостаткам можно отнести:

  1. Есть шансы на перестановки
  2. Нельзя также игнорировать вероятность многократного добавления
  3. Это не применимо к бензолам с несколькими электроноакцепторными группами.

Чтобы решить эти проблемы, было введено ацилирование Friedel Craft. Этот метод ацилирования решает первые две проблемы.

  1. Нуклеофильное ароматическое замещение.

Нуклеофильное ароматическое замещение включает реакцию замещения, при которой нуклеофил перемещает сильную уходящую группу, такую ​​как галогенид, на ароматическое кольцо. Эта реакция в основном происходит по одному из двух механизмов:

а) реакция присоединения-элиминирования или

б) Реакция элиминирования-присоединения

Основной принцип этой реакции может быть сформулирован в виде, когда замещенные атомы H «уходят» в виде протона, а формально электроны в связи CH «остаются позади», и существует необходимость завершить связывание с помощью электронодефицитный электрофил.

Когда нуклеофил заменяет водород, не может произвести замену, поскольку предполагается, что электроны также «уходят» (нуклеофил приносит свои собственные электроны в форме гидрид-аниона H-), возникает потребность в более уходящей группе. которые могут «забирать» электроны, нуждаются в обычной уходящей группе, такой как галогенид. Электроны — очень плохие уходящие группы.

Бензильное положение и его влияние на реакционную способность бензола 

Ароматичность бензола обуславливает его устойчивость ко многим реакциям, в которых обычно могут принимать участие алкены. Однако химики нашли способы реагировать на бензол, следуя различным другим методикам. Мы начнем обсуждение бензольных реакций с процессов, которые происходят не непосредственно в кольце, а на атоме углерода, непосредственно связанном с бензольным кольцом, точнее называемом бензольным углеродом.

Сильные окислители, такие как H₂CrO₄ и KMnO₄, не могут даже повлиять на бензол. Когда толуол обрабатывают этими окислителями в экстремальных условиях, метильная группа боковой цепи окисляется до карбоксильной группы с образованием основного побочного продукта бензойной кислоты.

Окисление метильной группы, сохраняющее ароматическое кольцо незатронутым, делает очевидным, что ароматическое кольцо чрезвычайно стабильно. Галоген и нитрозаместители в ароматическом кольце даже остаются незатронутыми этими окислениями. Например, хромовая кислота окисляет 2-хлор-4-нитротолуол с образованием 2-хлор-4-нитробензойной кислоты. Но и здесь нитро- и хлор-группы остаются неизменными.

Эти условия также позволяют окислять этилбензол и изопропилбензол до бензойной кислоты. Опять же, боковая цепь трет-бутилбензола, лишенная бензилового водорода, не подвержена влиянию этих окислительных условий.

Если бензиловый водород существует, то бензильный углерод окисляется до карбоксильной группы, и происходит удаление всех других углеродов боковой цепи. Если бензиловый водород отсутствует, как в случае трет-бутилбензола, окисление боковой цепи также не происходит.